Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 9,
  • Issue 11,
  • pp. 110013-
  • (2011)

Quasi-TEM mode propagation in twin-wire THz waveguides (Invited Paper)

Not Accessible

Your library or personal account may give you access

Abstract

We numerically investigate the trade-offs between the dispersion properties, coupling efficiency, and geometrical constraints in dual-wire (twin-lead) terahertz (THz) waveguides. In particular, we show that their inherent linearly polarized quasi-transverse electromagnetic (TEM) modes exist for waveguide transverse dimensions comparable with the wavelength, enabling significant end-fire coupling (>10%) for numericalaperture limited Gaussian beams while supporting a relatively low-dispersion propagation of below 0.5 ps2/m, as desired for short-pulse time-domain spectroscopy applications. Starting from the dual-wire structure, we also demonstrate that low-dispersion tapers can be designed to improve coupling efficiency.

© 2011 Chinese Optics Letters

PDF Article
More Like This
Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited]

Andrey Markov, Hichem Guerboukha, and Maksim Skorobogatiy
J. Opt. Soc. Am. B 31(11) 2587-2600 (2014)

Hybrid hollow core fibers with embedded wires as THz waveguides

Jessienta Anthony, Rainer Leonhardt, and Alexander Argyros
Opt. Express 21(3) 2903-2912 (2013)

Perturbative solution for terahertz two-wire metallic waveguides with different radii

Hua Gao, Qing Cao, Da Teng, Minning Zhu, and Kai Wang
Opt. Express 23(21) 27457-27473 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved