Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 6,
  • pp. 060801-
  • (2016)

Compact freeform off-axis three-mirror imaging system based on the integration of primary and tertiary mirrors on one single surface

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, a novel and compact freeform off-axis three-mirror imaging system and its detailed design method are proposed. The primary mirror and tertiary mirror of the system have the same surface analytical expression and they are integrated on one single freeform surface. In this way, the alignment process is made much easier due to the much fewer degrees of freedom. In addition, the difficulty and cost for the data handling, fabrication, and testing of the freeform surfaces and system can also be significantly reduced in some cases, especially compared with the configuration having multiple surfaces of different expressions integrated on one monolithic substrate. The final system has a 100 mm effective focal length and a 4°×3° field of view. The modulation transfer function of the system is close to the diffraction-limit.

© 2016 Chinese Laser Press

PDF Article
More Like This
Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror

Qingyu Meng, Hongyuan Wang, Kejun Wang, Yan Wang, Zhenhua Ji, and Dong Wang
Appl. Opt. 55(32) 8962-8970 (2016)

Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view

Qingyu Meng, Hongyuan Wang, Wenjing Liang, Zhiqiang Yan, and Bingwen Wang
Appl. Opt. 58(3) 609-615 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.