Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 14,
  • Issue 3,
  • pp. 030601-
  • (2016)

Modeling and analyzing the temperature sensitivity of radiation-induced attenuation in a Ge-P co-doped fiber

Not Accessible

Your library or personal account may give you access

Abstract

A model for the temperature sensitivity of radiation-induced attenuation (RIA) is investigated. The RIA spectra in a germanium (Ge) and phosphorous (P) co-doped fiber ranging from 825 to 1600 nm at different temperatures are measured and decomposed according to the configurational coordinate model. It is found that there is a linear relationship between the parameters of the color center absorption band and temperature. The model is verified at 850, 1310, and 1550 nm by both simulation and experiment. This work will be useful to research on the applications of optical fiber sensors in a complicated space environment.

© 2016 Chinese Laser Press

PDF Article
More Like This
Influence of temperature and dose rate on radiation-induced attenuation at 1542 nm in fluorine-doped fibers

Antoine Gallet, Matthieu Caussanel, Olivier Gilard, Hervé Duval, Julien Eynard, Kadar Mahamoud Djama, Stéphane Thil, Stéphane Grieu, Thomas Grimaud, and Alain Pastouret
Appl. Opt. 60(16) 4841-4847 (2021)

Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range

Alexander L. Tomashuk, Mikhail V. Grekov, Sergei A. Vasiliev, and Vyacheslav V. Svetukhin
Opt. Express 22(14) 16778-16783 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.