Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 13,
  • Issue 5,
  • pp. 051403-051403
  • (2015)

Resonant ablation rules of femtosecond laser on Pr–Nd doped silicate glass

Not Accessible

Your library or personal account may give you access

Abstract

Resonant effect is found in femtosecond laser ablating Pr–Nd glass. When processed with resonant wavelength of 807 nm, resonant ablation efficiency (RAE) with a single pulse can be improved by 45.22%. Furthermore, RAE closely relates to laser intensity. For resonant ablation, RAE is increased significantly when laser intensity <0.556×1014??W/cm2 at which multiphoton ionization dominates, while it fades away when laser intensity >0.556×1014??W/cm2 at which tunnel ionization dominates. Besides, it is also found that the ablation depth increases along with the wavelength rise when multiphoton ionization dominates, while the change rule is inversed when tunnel ionization dominates.

© 2015 Chinese Laser Press

PDF Article
More Like This
Resonant effects in nonlinear photon absorption during femtosecond laser ablation of Nd-doped silicate glass

Yadong Zhao, Lan Jiang, Juqiang Fang, Qianghua Chen, Xiaowei Li, and Yongfeng Lu
Appl. Opt. 51(29) 7039-7045 (2012)

Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy

Moritz Grehn, Thomas Seuthe, Michael Höfner, Nils Griga, Christoph Theiss, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Eichler, and Jörn Bonse
Opt. Mater. Express 4(4) 689-700 (2014)

Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing

Shi-Ling Li, Peigao Han, Meng Shi, Yicun Yao, Bing Hu, Mingwei Wang, and Xiaonong Zhu
Opt. Express 19(24) 23958-23964 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved