Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 12,
  • Issue 6,
  • pp. 060003-
  • (2014)

Color holographic display based on azo-dye-doped liquid crystal (Invited Paper)

Not Accessible

Your library or personal account may give you access

Abstract

A multiplexed holographic display video has been achieved by using a passive azo-dye-doped liquid crystal (LC) cell. Holograms formed in this cell can be refreshed in the order of several milliseconds. By angular multiplexing technique, dynamically multiplexed holographic videos are realized. Moreover, the reconstructed RGB images are merged into a color image, which illustrates the possibility of a color holographic three-dimensional (3D) display by holographic multiplexing of the LC cell.

© 2014 Chinese Optics Letters

PDF Article
More Like This
All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals

Hossein Jashnsaz, Nahid Hosain Nataj, Ezeddin Mohajerani, and Amir Khabbazi
Appl. Opt. 50(22) 4295-4301 (2011)

Polarization-independent holographic gratings based on azo-dye-doped polymer-dispersed liquid-crystal films

Andy Ying-Guey Fuh, Che-Chang Chen, Ko-Ting Cheng, Cheng-Kai Liu, and Wei-Ko Chen
Appl. Opt. 49(2) 275-280 (2010)

Polarization holographic grating based on azo-dye-doped polymer-ball-type polymer-dispersed liquid crystals

Andy Ying-Guey Fuh, Chia-Rong Lee, and Ting-Shan Mo
J. Opt. Soc. Am. B 19(11) 2590-2594 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.